
Advanced Computer Programming
[Lecture 03]

Saeed Reza Kheradpisheh

kheradpisheh@ut.ac.ir

Department of Computer Science
Shahid Beheshti University

Spring 1397-98

1

DECISIONS

One of the essential features of computer programs is their ability to
make decisions. Like a train that changes tracks depending on how
the switches are set, a program can take different actions depending
on inputs and other circumstances.

2

The if Statement
Usage
The if statement allows a program to carry out different actions
depending on the nature of the data to be processed.
It is used to implement a decision.

Syntax

if (condition)
{

//body
statements

}

if (condition)
{

//body
statements 1

}
else
{

//body
statements 2

}

3

The if Statement
Usage
The if statement allows a program to carry out different actions
depending on the nature of the data to be processed.
It is used to implement a decision.

Syntax

if (condition)
{

//body
statements

}

if (condition)
{

//body
statements 1

}
else
{

//body
statements 2

}
3

The if Statement

4

The if Statement: Example

int floor = in.nextInt();
int actualFloor = 0;
if (floor > 13)
{

actualFloor = floor - 1;
}
else
{

actualFloor = floor;
}

5

The if Statement: Example

int floor = in.nextInt();
int actualFloor = 0;
if (floor > 13)
{

actualFloor = floor - 1;
}
else
{

actualFloor = floor;
}

5

The if Statement: Example

int floor = in.nextInt();
int actualFloor = floor;
if (floor > 13)
{

actualFloor--;
}

6

There are Two Types of People

7

Always Use Braces

Braces can be omitted when there is only a single statement in
the body of the if statement

if (floor > 13)
floor--;

However, it is a good idea to always include the braces

if (floor > 13)
{

floor--;
}

8

Tabs
Block-structured code has the property that nested statements are
indented by one or more levels:

Use the ’Tab’ key on your keyboard to make indentations.
9

Avoid Duplication in Branches

Look to see whether you duplicate code in each branch. If so, move it
out of the if statement.

10

Avoid Duplication in Branches

Look to see whether you duplicate code in each branch. If so, move it
out of the if statement.

11

Relational Operators
Usage
In Java, you use a relational operator to compare two values.

Double check the equality operator!

12

Relational Operators
Usage
In Java, you use a relational operator to compare two values.

Double check the equality operator!
12

Relational Operators: Examples

13

Think Twice, Code Once

Problem

Consider you have a watermelon of weight w and you want to divide it
into two parts, each weights an even number.
Write a program that determines whether the division is possible or
not, for a given w.

14

Comparing Strings

Equality: by use of the equal method

String str = "Tomato";
if (str.equals("Tom"))
{

System.out.println("Hi");
}
if (str.substring(0, 3).equals("Tom"))
{

System.out.println("Bye");
}
Output:

Bye

15

Comparing Strings

Equality: by use of the equal method

String str = "Tomato";
if (str.equals("Tom"))
{

System.out.println("Hi");
}
if (str.substring(0, 3).equals("Tom"))
{

System.out.println("Bye");
}
Output: Bye

15

Comparing Strings

Ordering: by use of the compareTo method.
This ordering is very similar to the way in which words are sorted
in a dictionary.

Assume that we want to compare values of two string variables
string1 and string2, if

string1.compareTo(string2) < 0, then
then the string string1 comes before the string string2 in the
dictionary.
string1.compareTo(string2) > 0, then
then the string string1 comes after the string string2 in the
dictionary.
string1.compareTo(string2) == 0, then
string1 and string2 are equal.

16

Multiple Alternatives

In many situations, there are more than two cases for a decision.

For example, consider a program that displays the effect of an
earthquake, as measured by the Richter scale

17

Multiple Alternatives

In many situations, there are more than two cases for a decision.

For example, consider a program that displays the effect of an
earthquake, as measured by the Richter scale

17

Multiple Alternatives

Make use of if-else if structure:

18

Multiple Alternatives

19

Nested Branches
Definition
When a decision statement is contained inside the branch of another
decision statement, the statements are nested.

Example: In the United States, different tax rates are used depending
on the taxpayers marital status.

20

Nested Branches

21

Nested Branches

22

The Dangling else Problem

Definition
The ambiguous else is called a dangling else.

You can avoid this pitfall if you always use braces.

The compiler ignores all indentation and matches the else with the
preceding if.

23

The Dangling else Problem

Definition
The ambiguous else is called a dangling else.

You can avoid this pitfall if you always use braces.

The compiler ignores all indentation and matches the else with the
preceding if.

23

The Dangling else Problem

Definition
The ambiguous else is called a dangling else.

You can avoid this pitfall if you always use braces.

24

Who is the First?

Problem
Write a program that takes information of two students including their
last name and GPA. The program should then print the name of the
student with higher GPA. In case of equality, the program should print
the name with lower rank in alphabetic order.

25

Boolean Variables

Usage
To store a condition that can be true or false, you use a Boolean
variable.

In Java, the boolean data type has exactly two values, denoted
false and true.

You can use boolean variables later in your program to make a
decision.

boolean failed = true;
if (failed)
{// Only executed if failed has been set to true

. . .
}

26

Boolean Operators
Definition and Usage
When you make complex decisions, you often need to
combine Boolean values. An operator that combines Boolean
conditions is called a Boolean operator.

&& (called and) operator: yields true only when both conditions
are true.
if (temp > 0 && temp < 100) {
System.out.println("Liquid"); }
|| (called or) operator: yields the result true if at least one of
the conditions is true.
if (temp <= 0 || temp >= 100) {
System.out.println("Not liquid"); }
! (called not) operator: takes a single condition and evaluates to
true if that condition is false.
if (!frozen) { System.out.println("Not frozen"); }

27

Boolean Operators
Definition and Usage
When you make complex decisions, you often need to
combine Boolean values. An operator that combines Boolean
conditions is called a Boolean operator.

&& (called and) operator: yields true only when both conditions
are true.
if (temp > 0 && temp < 100) {
System.out.println("Liquid"); }

|| (called or) operator: yields the result true if at least one of
the conditions is true.
if (temp <= 0 || temp >= 100) {
System.out.println("Not liquid"); }
! (called not) operator: takes a single condition and evaluates to
true if that condition is false.
if (!frozen) { System.out.println("Not frozen"); }

27

Boolean Operators
Definition and Usage
When you make complex decisions, you often need to
combine Boolean values. An operator that combines Boolean
conditions is called a Boolean operator.

&& (called and) operator: yields true only when both conditions
are true.
if (temp > 0 && temp < 100) {
System.out.println("Liquid"); }
|| (called or) operator: yields the result true if at least one of
the conditions is true.
if (temp <= 0 || temp >= 100) {
System.out.println("Not liquid"); }

! (called not) operator: takes a single condition and evaluates to
true if that condition is false.
if (!frozen) { System.out.println("Not frozen"); }

27

Boolean Operators
Definition and Usage
When you make complex decisions, you often need to
combine Boolean values. An operator that combines Boolean
conditions is called a Boolean operator.

&& (called and) operator: yields true only when both conditions
are true.
if (temp > 0 && temp < 100) {
System.out.println("Liquid"); }
|| (called or) operator: yields the result true if at least one of
the conditions is true.
if (temp <= 0 || temp >= 100) {
System.out.println("Not liquid"); }
! (called not) operator: takes a single condition and evaluates to
true if that condition is false.
if (!frozen) { System.out.println("Not frozen"); }

27

Boolean Operators

28

Boolean Operators

29

Boolean Algebra

Problem
Write a program that evaluates boolean and, or, and xor.
The input is a 3-character string in one of the following forms:

”PaQ”, for P and Q,

”PoQ”, for P or Q,

”PxQ”, for P xor Q,

where P and Q can be either ’0’ or ’1’.

Add ”PtQ”, for if P then Q.

30

Boolean Algebra

Problem
Write a program that evaluates boolean and, or, and xor.
The input is a 3-character string in one of the following forms:

”PaQ”, for P and Q,

”PoQ”, for P or Q,

”PxQ”, for P xor Q,

where P and Q can be either ’0’ or ’1’.
Add ”PtQ”, for if P then Q.

30

Some Handy Tools

Conditional Operator

Usage
Sometimes you just need to switch between two values according to a
condition. In this case, the conditional operator facilitates your job.

condition ? value1 : value2;

The value of that expression is either value1 if the test passes or
value2 if it fails.

31

Some Handy Tools

Conditional Operator

Example
actualFloor = floor > 13 ? floor - 1 : floor;
equals to

if (floor > 13)
{

actualFloor = floor - 1;
}
else
{

actualFloor = floor;
}

32

Some Handy Tools

The switch Statement

Usage
An if/else if/else
sequence that compares a
value against several
alternatives can be
implemented as a switch
statement.

switch (variableName)
{

case value 1:
statements 1
break;

case value 2:
statements 2
break;

...
case value n:

statements n
break;

default:
statements
break;

} 33

Some Handy Tools

The switch Statement

Example

34

Some Handy Tools

Enumeration Types

An enumeration type is a type that has a finite set of named values.

public enum TypeName {NAME 1, NAME 2, ..., NAME n}

Example
public class TaxReturn
{

public enum FilingStatus {SINGLE, MARRIED}
public static void main(String[] args)
{

FilingStatus status = FilingStatus.SINGLE;
...

}
}

35

The while Loop

while (condition)
{

statements
}

36

